Neural Network Implementation Using FPGA: Issues and Application

نویسندگان

  • A. Muthuramalingam
  • S. Himavathi
  • E. Srinivasan
چکیده

Hardware realization of a Neural Network (NN), to a large extent depends on the efficient implementation of a single neuron. FPGA-based reconfigurable computing architectures are suitable for hardware implementation of neural networks. FPGA realization of ANNs with a large number of neurons is still a challenging task. This paper discusses the issues involved in implementation of a multi-input neuron with linear/nonlinear excitation functions using FPGA. Implementation method with resource/speed tradeoff is proposed to handle signed decimal numbers. The VHDL coding developed is tested using Xilinx XC V50hq240 Chip. To improve the speed of operation a lookup table method is used. The problems involved in using a lookup table (LUT) for a nonlinear function is discussed. The percentage saving in resource and the improvement in speed with an LUT for a neuron is reported. An attempt is also made to derive a generalized formula for a multi-input neuron that facilitates to estimate approximately the total resource requirement and speed achievable for a given multilayer neural network. This facilitates the designer to choose the FPGA capacity for a given application. Using the proposed method of implementation a neural network based application, namely, a Space vector modulator for a vector-controlled drive is presented Keywords— FPGA Implementation, Multi-input Neuron, Neural Network, NN based Space Vector Modulator

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Digital Implementation of Artificial Neural Network for Function Approximation and Pressure Control Applications

The soft computing algorithms are being nowadays used for various multi input multi output complicated non linear control applications. This paper presented the development and implementation of back propagation of multilayer perceptron architecture developed in FPGA using VHDL. The usage of the FPGA (Field Programmable Gate Array) for neural network implementation provides flexibility in progr...

متن کامل

Dual-processor Neural Network Implementation in Fpga

Artificial Neural Networks have become a common solution for many real world problems. Many industrial, commercial and research applications need hardware implementation due to issues regarding stability, speed, price and size. This paper presents the implementation of a feed forward Artificial Neural Network in FPGA using two embedded processors. The processors used are Xilinx hardcore PowerPC...

متن کامل

Neural Network Implementation in Hardware Using FPGAs

The usage of the FPGA (Field Programmable Gate Array) for neural network implementation provides flexibility in programmable systems. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for re...

متن کامل

VLSI Architecture for Neural Network

In this paper a hardware implementation of an artificial neural network on Field Programmable Gate Arrays (FPGA) is presented. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With the low precision artificial neural network (ANN) design, FPGAs have higher speed and smaller size for...

متن کامل

A Networked FPGA-Based Hardware Implementation of a Neural Network Application

This paper describes a networked FPGA-based implementation of the FAST (Flexible Adaptable-Size Topology) architecture, a Arti cial Neural Network (ANN) that dynamically adapts its size. Most ANN models base their ability to adapt to problems on changing the strength of the interconnections between computational elements according to a given learning algorithm. However, constrained interconnect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007